Localization of Hydrogen Atoms by Neutron Profile Refinement of Vanadyl Sulphate Trihydrate, $\mathrm{VOSO}_{4} \cdot \mathbf{3 D}_{2} \mathrm{O}$

By Michel Tachez and François Théobald
Université de Franche-Comté, Laboratoire de Chimie-Physique, 32 rue Mégevand, 25030 Besançon CEDEX, France

and Alan W. Hewat
Institut Laue-Langevin, 156 X Centre de Tri, 38042 Grenoble CEDEX, France

(Received 11 June 1981; accepted 5 February 1982)

Abstract

Neutron powder data collected at 300 K with $1.909 \AA$ radiation have been refined to give the D atom positions. $\mathrm{VOSO}_{4} \cdot 3 \mathrm{D}_{2} \mathrm{O}$ has space group $P 2_{1} / n$, with $Z=4$. Crystal data from neutron diffraction data [X-ray diffraction datal are $a=$ 7.3972 (3) [7.387 (2)], $b=7.4186$ (3) [7.401 (2)], $c=12.0756$ (4) $[12.046$ (2) $\mid \AA, \beta=106.506$ (3) $[106.57(3)]^{\circ}, V=635 \cdot 36$ (8) $[631 \cdot 2(1 \cdot 1)] \AA^{3}, R_{I}=$ $0.128\left[R_{F}=0.0318\right]$ for 649 [2117] observed reflections $[\lambda(\mathrm{X}-\mathrm{ray})=0.71069 \AA]$. The hydrogenbond scheme obtained previously from single-crystal X-ray diffraction has been improved. Two hydrogen bonds have been shown to be weak, and four to be normal. One water molecule is tetrahedral, two are trigonal.

Introduction. The present structure, $\mathrm{VOSO}_{4} \cdot 3 \mathrm{D}_{2} \mathrm{O}$, has been studied previously by single-crystal X-ray diffraction (Tachez \& Théobald, 1980). In the last refinement, which was performed by least squares from diffractometer data, we concluded that three hydrogen atoms, $\mathrm{H}(21), \mathrm{H}(22)$ and $\mathrm{H}(42)$, were not well located. The present study was undertaken to confirm the hydrogen-bond scheme proposed earlier.

A blue powder of $\mathrm{VOSO}_{4} \cdot 3 \mathrm{D}_{2} \mathrm{O}$ was obtained by hydrating anhydrous α - VOSO_{4} (Longo \& Arnott, 1970) in a sealed glass tube ($200 \mathrm{~cm}^{3}$) with $\mathrm{D}_{2} \mathrm{O}$ vapour pressure at 300 K . In fact the actual content of deuterated water molecules was not 100% but only 76% as indicated after structure refinement. The difference was due to the fact that the deuterated water was not $100 \% \mathrm{D}_{2} \mathrm{O}$ and also due to the isotopic exchange while handling samples. The powder material was placed in a 12 mm vanadium can.

The neutron diffraction experiment was performed on the D1A diffractometer of the Institut LaueLangevin in Grenoble with the neutron wavelength $1.909 \AA$ covering an effective 2θ range of 6 to 160° in steps of 0.05°. The scattering lengths used were those
of International Tables for X-ray Crystallography (1974).

Rietveld's (1969) least-squares refinement program modified by Hewat (1973a,b) was used to refine 71 parameters with isotropic temperature factors to an R^{*} of $0 \cdot 128 . \dagger$ The starting point was the X-ray structure (Tachez \& Théobald, 1980).

No correction for preferred orientation or absorption was made. No attempt was made to use anisotropic thermal parameters since the quality of the data did not justify it.

[^0]Table 1. Atomic parameters with e.s.d.'s in parentheses

	x	y	z	$\begin{aligned} & B_{\text {iso }} \\ & \left(\AA^{2}\right) \end{aligned}$
V*	$0 \cdot 5680$ (1)	0.2831 (1)	-0.1253 (1)	0.99 (3)
S	0.229 (2)	0.358 (2)	-0.012 (1)	0.8 (2)
O(1)	0.444 (1)	0.4032 (9)	-0.2249 (7)	2.0 (2)
$\mathrm{O}(2)$	0.760 (1)	$0 \cdot 103$ (1)	0.0184 (7)	1.6 (2)
$\mathrm{O}(3)$	0.440 (1)	0.041 (1)	-0.1715 (8)	$2 \cdot 5$ (2)
O(4)	0.769 (1)	0.202 (1)	-0.2072 (8)	2.0 (2)
O(5)	0.760 (1)	0.458 (1)	-0.0348 (6)	1.6 (2)
O(6)	0.425 (1)	$0 \cdot 300$ (1)	--0.0071 (7)	1.9 (2)
O(7)	$0 \cdot 158$ (1)	$0 \cdot 2320$ (9)	0.0624 (7)	1.9 (2)
O(8)	$0 \cdot 110$ (1)	0.3582 (9)	-0.1306 (7)	2.4 (2)
D(21)	0.885 (1)	$0 \cdot 162$ (1)	0.0510 (8)	3.0 (2)
D(22)	0.794 (1)	-0.008 (1)	-0.0185 (9)	$2 \cdot 8$ (2)
D(31)	0.364 (2)	-0.016 (2)	-0.129 (1)	$5 \cdot 0$ (3)
D(32)	0.407 (1)	-0.010 (1)	-0.2490 (9)	$2 \cdot 6$ (2)
D(41)	0.726 (1)	0.226 (1)	-0.291 (1)	2.6 (2)
D(42)	0.887 (1)	0.255 (1)	-0.1807 (9)	2.9 (2)

[^1]The site occupancy of the D atoms was refined to allow for the effect of D / H substitution. The cell parameters (Abstract) determined from profile analysis have very high accuracy (Hewat, 1973a). The final coordinates for the D atoms lalso designated $H(21), \ldots, H(42)$ elsewhere in this paperl are given in Table 1.

Discussion. The coordinates of the non-hydrogen atoms in the present investigation are in good agreement with those obtained by X-ray techniques. The description of the structure is therefore the same: two VO_{6} octahedra share two neighbouring oxygen atoms with two SO_{4} tetrahedra to build a dimer [$\mathrm{VO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{SO}_{4} \mathrm{I}_{2}$. The previous localization of D atoms by the X -ray single-crystal method was quite good except for $\mathrm{D}(21)$ which was supposed to be involved in a bifurcated hydrogen bond. $\mathrm{D}(21)$ is now shifted towards $\mathrm{O}\left(7^{\mathrm{i}}\right)$ to give a normal hydrogen bond. Table 2 gives interatomic distances and bond angles in the water molecules and the hydrogen bonds.

In a survey of water-molecule geometry in crystalline hydrates determined by neutron diffraction, Ferraris \& Franchini-Angela (1972) found the average values $0.956 \AA$ for the $\mathrm{O}-\mathrm{H}$ length and 107.8° for the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle. In the present study the averages are 0.97 (2) \AA and 105 (2) ${ }^{\circ}$. Brown (1976) has, from a bond valence analysis of the repulsion between the O atoms in an $\mathrm{OH} \cdots \mathrm{O}$ bond, predicted a correlation between the $\mathrm{O} \cdots \mathrm{H}$ distance and the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle. In this structure, there are two weak hydrogen bonds: $\mathrm{O}\left(7^{\mathrm{i}}\right) \cdots \mathrm{H}(21) \quad 2.05(2) \AA$ and $\mathrm{O}\left(2^{\mathrm{ii}}\right) \cdots \mathrm{H}(31)$ 1.94 (2) \AA with $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angles 158 and 168°. This first value but not the second is in good agreement with Brown's (1976) correlation. The four other O $\cdots \mathrm{H}$ hydrogen bonds between 1.72 (1) and 1.81 (1) \AA are stronger and their $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angles are between 166 and 179° as predicted from Brown's paper. The hydrogen bond is much more bent when the $\mathrm{O} \cdots \mathrm{H}$ distance is longer.
The environment of the water molecule $\mathrm{H}_{2} \mathrm{O}(3)$ is trigonal [type D in Ferraris \& Franchini-Angela's (1972) classification], i.e. the $\mathrm{V}-\mathrm{O}$ bond is approxi-

Fig. 1. The environment of the trigonal water molecules. (Distances in \AA. angles in deg.)

Fig. 2. The environment of the tetrahedral water molecule. (Distances in \AA, angles in deg.)
mately along the bisector of the lone-pair orbitals of the water molecule. The environment of the water molecule $\mathrm{H}_{2} \mathrm{O}(4)$ is also trigonal but it belongs to type J, i.e. the $\mathrm{V}-\mathrm{O}$ bonds are approximately along one lone-pair orbital of the water molecule. The values of angles ε_{1} between $\mathrm{V}-\mathrm{O}$ and the $\mathrm{H}_{2} \mathrm{O}$ bisector are 26 and 48° (Fig. 1). The third water molecule $\mathrm{H}_{2} \mathrm{O}(2)$ is tetrahedral (Fig. 2), including the hydrogen atoms $\mathrm{H}(21)$ and $\mathrm{H}(22)$ and, in the directions of the lone pairs, atoms V and $\mathrm{H}(31)$: it belongs to class H according to Ferraris \& Franchini-Angela (1972).

Table 2. Geometric characteristics of water molecules and hydrogen bonds $\left(\AA,{ }^{\circ}\right)$
X-ray values are in square brackets.

Symmetry code: (i) $1+x, y, z$: (ii) $1-x, \bar{y}, \bar{z}$: (iii) $\frac{1}{2}-x, y-\frac{1}{2},-\frac{1}{2}-z$: (iv) $\frac{1}{2}+x \cdot \frac{1}{2}-r, z-\frac{1}{2}$.

123	d_{23}	d_{34}	<234	d_{12}	$d_{4 \leqslant}$	$\angle 123$	$\angle 345$	d_{13}	d_{35}		
$\mathrm{O}\left(7^{\prime}\right) \cdots \mathrm{H}(21)-\mathrm{O}(2)-\mathrm{H}(22) \cdots \mathrm{O}\left(7^{\prime \prime}\right)$	$\begin{gathered} 1.00(1) \\ \|0.81(13)\| \end{gathered}$	$\begin{gathered} 1.00(1) \\ 10.99(10) \mid \end{gathered}$	$\begin{gathered} 102(1) \\ \|114(12)\| \end{gathered}$	$\begin{gathered} 2.05(2) \\ \|2.42(15)\| \end{gathered}$	$\begin{gathered} 1.81(1) \\ \|1.88(9)\| \end{gathered}$	$\begin{gathered} 158(1) \\ \|128(14)\| \end{gathered}$	$\begin{gathered} 168(1) \\ \|149(9)\| \end{gathered}$	\|2.996 (3)		\|2.778 (3)	
$\mathrm{O}\left(2^{\prime \prime}\right) \cdots \mathrm{H}(31)-\mathrm{O}(3)-\mathrm{H}(32) \cdots \mathrm{O}\left(8^{\prime \prime \prime}\right)$	$\begin{gathered} 0.95(2) \\ \|0.86(6)\| \end{gathered}$	$\begin{gathered} 0.97(1) \\ \|0.81(5)\| \end{gathered}$	$\begin{gathered} 108(1) \\ \|106(5)\| \end{gathered}$	$\begin{gathered} 1.94(2) \\ \|2.05(6)\| \end{gathered}$	$\begin{gathered} 1.73(1) \\ \|1.92(5)\| \end{gathered}$	$\begin{gathered} \mid 68(1) \\ \|169(5)\| \end{gathered}$	$\begin{gathered} 166(1) \\ \|158(5)\| \end{gathered}$	\|2.904 (3)		\|2.687 (4)	
$\mathrm{O}\left(7^{\prime}\right) \cdots \mathrm{H}(41)-\mathrm{O}(4)-\mathrm{H}(42) \cdots \mathrm{O}\left(8^{\prime}\right)$	$\begin{gathered} 0.99(1) \\ \|1.12(5)\| \end{gathered}$	$\begin{aligned} & 0.93(1) \\ & 10.891 \end{aligned}$	$\begin{aligned} & 106(1) \\ & \|113\| \end{aligned}$	$\begin{gathered} 1.72(1) \\ \|1.60(5)\| \end{gathered}$	$\begin{aligned} & 1.76(1) \\ & 11.821 \end{aligned}$	$\begin{gathered} 178(1) \\ \|170(5)\| \end{gathered}$	$\begin{gathered} 179(1) \\ \|174\| \end{gathered}$	\|2.715 (3)		\|2.704 (4)	

References

Brown, I. D. (1976). Acta Cryst. A 32, 24-31.
Ferraris, G. \& Franchini-Angela, M. (1972). Acta Cryst. B28, 3572-3583.
Hewat, A. W. (1973a). Rutherford Report RRL 73/239. The Rietveld computer program for the profile refinement of neutron diffraction powder patterns modified for anisotropic thermal vibrations.

Hewat, A. W. (1973b). J. Phys. C, 6, 2559-2572.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Longo, J. M. \& Arnott, R. J. (1970). J. Solid State Chem. 1, 394-398.
Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.
Tachez, M. \& Théobald, F. (1980). Acta Cryst. B36. 2873-2880.

Acta Cryst. (1982). B38, 1809-1811

Refinement of the Structure of Tellurium Phosphate $\mathrm{Te}_{2} \mathrm{O}_{3} \cdot \mathrm{HPO}_{4}{ }^{*}$

By N. W. Alcock and W. D. Harrison
Department of Chemistry and Molecular Sciences, University of Warwick, Coventry CV4 7AL, England

(Received 2 December 1981; accepted 15 February 1982)

Abstract

Te}_{2} \mathrm{HPO}_{7}\), orthorhombic, $P c a 2_{1}, a=$ 10.239 (1), $b=7.018$ (1), $c=7.933$ (1) $\AA, V=$ $570 \cdot 1$ (1) $\AA^{3}, Z=4, M_{r}=399 \cdot 2, D_{c}=4.65 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Мо $K())=0.71069 \AA, \mu($ Мо $K x)=105.2 \mathrm{~cm}^{-1}$; data for 696 diffractometer-observed reflections [I/ $\sigma(I) \geq 3.0], R=0.022$. The two Te atoms adopt trigonal-bipyramidal geometry [Te-O 1.903 (9)$2 \cdot 183$ (8) \AA] with several secondary interactions $[\mathrm{Te} \cdots \mathrm{O} \quad 2.730(10)-3.262(8) \AA$], the shortest of which completes distorted square-based pyramidal geometry at $\mathrm{Te}(2)$.

Introduction. Several $\mathrm{Te}^{\mathrm{IV}}$ oxy salts are reported to exist (Klein \& Morel, 1885), including the nitrate $\mathrm{Te}_{2} \mathrm{O}_{4} \cdot \mathrm{HNO}_{3}$ (Swink \& Carpenter, 1966), the sulphate $\mathrm{Te}_{2} \mathrm{O}_{3} \mathrm{SO}_{4}$ (Johansson \& Lindqvist, 1976; Hubková, Loub \& Syneček, 1966) and the two phosphates $\mathrm{Te}_{2} \mathrm{O}_{3} \cdot \mathrm{HPO}_{4}$ (Mayer, 1975) and $\mathrm{Te}_{4} \mathrm{O}_{5}\left(\mathrm{PO}_{4}\right)_{2}$ (Mayer \& Pupp, 1977), whose structures are known. Reports of the perchlorate $2 \mathrm{TeO}_{2} \cdot \mathrm{HClO}_{4}$ (Fichter \& Schmid, 1916), the periodate $2 \mathrm{TeO}_{2} . \mathrm{HIO}_{4}$ (Montignie, 1945) and another phosphate $2 \mathrm{TeO}_{2} . \mathrm{HPO}_{4}$ (Mayer, 1975) do not include structural information. The structures of several aryl-substituted Te salts (Alcock \& Harrison, 1982) all contain secondary bonds and it was decided to investigate the remaining unsubstituted salts. We have found that the reported preparations of the perchlorate and periodate give only crystals of tetragonal $\alpha-\mathrm{TeO}_{2}$ and orthotelluric acid respectively.

We repeated the reported preparation of $2 \mathrm{TeO}_{2} \cdot \mathrm{H}_{3} \mathrm{PO}_{4}$, isolating colourless platy crystals by

[^2]0567-7408/82/061809-03\$01.00
dissolving TeO_{2} in orthophosphoric acid at 383 K and allowing the solution to cool. The air-stable crystals were collected, washed with water and acetone and dried in air. On examination by single-crystal X-ray analysis, the crystals were found to be identical to those of the previously reported $\mathrm{Te}_{2} \mathrm{O}_{3} \cdot \mathrm{HPO}_{4}$. As this structure was based on Weissenberg data, refined isotropically to $R=0 \cdot 10$, we describe here a refinement to higher accuracy enabling us to discuss the primary and secondary bonding in more detail.
Data were collected with a Syntex $P 2_{1}$ four-circle diffractometer. The maximum 2θ was 50°, with a scan range of $\pm 1 \cdot 0^{\circ}(2 \theta)$ around the $K a_{1}-K a_{2}$ angles, and the scan speed was $2-29^{\circ} \mathrm{min}^{-1}$, depending on the intensity of a 2 s pre-scan; backgrounds were measured at each end of the scan for 0.25 of the scan time. Three standard reflections were monitored every 100 reflections, and showed no significant changes during data collection. Unit-cell dimensions and standard deviations were obtained by least-squares fit to 15 high-angle reflections. 696 observed reflections $|I / \sigma(I) \geq 3.0|$ were used in the refinement, and corrected for Lorentz, polarization and absorption effects, the last with ABSCOR (Alcock, 1970). Systematic absences, 0kl, l $\neq 2 n ; h 0 l, h \neq 2 n ; h 00(h \neq 2 n)$, indicate space group Pca2 ${ }_{1}$, as in the previous report.
The positions of two Te atoms were located by direct methods using MULTAN 80 (Main, 1980) and a trial solution, after two cycles of isotropic refinement, gave $R=0.182$. The remaining non -H atoms were located by successive difference Fourier syntheses and anisotropic least-squares refinements. An empirical weighting scheme was employed giving decreased weight to reflections with high $F_{\text {obs }}$ and low $\sin \theta$. The final R
(c) 1982 International Union of Crystallography

[^0]: ${ }^{*} R$ is defined as $\sum\left|I_{o}-(1 / c) I_{c}\right| / \sum I_{o}$, where I_{o} and I_{c} are observed and calculated separated intensities for each Bragg peak.
 \dagger A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36706 (15 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

[^1]: * For the V atom, the atomic parameters are those of the X -ray method.

[^2]: *Secondary Bonding. 10. Part 9: Alcock \& Harrison (1982).

